Generalized power series fields
نویسندگان
چکیده
منابع مشابه
Uniserial modules of generalized power series
Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملExponentiation in Power Series Fields
We prove that for no nontrivial ordered abelian group G, the ordered power series field R((G)) admits an exponential, i.e. an isomorphism between its ordered additive group and its ordered multiplicative group of positive elements, but that there is a nonsurjective logarithm. For an arbitrary ordered field k, no exponential on k((G)) is compatible, that is, induces an exponential on k through t...
متن کاملFactorization in Generalized Power Series
The field of generalized power series with real coefficients and exponents in an ordered abelian divisible group G is a classical tool in the study of real closed fields. We prove the existence of irreducible elements in the ring R((G≤0)) consisting of the generalized power series with non-positive exponents. The following candidate for such an irreducible series was given by Conway (1976): ∑ n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1948
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1948-0024883-6